A Review paper on Non-invasive Blood Pressure Monitoring using Pulse Transition Time

Karanjeet Singh
Mtech scholar, Dept. of ECE
DIET, Kharar, India

Parminder Singh
Astt.Prof., Dept. of ECE
DIET, Kharar, India

ABSTRACT
Blood pressure (BP) is one of the important vital signs that need to be monitored for personal healthcare. This paper attempts to present the Blood Pressure (BP) estimation using the Pulse Transit Time (PTT) cuff-less method. PTT is measured by synchronous electrocardiogram and photoplethysmography (PPG) registration and the difference time is the basis parameter for blood pressure estimation. Pulse transit time is the time taken for the arterial pulse Pressure wave to travel from the aortic valve to a peripheral site. It is usually measured from the R wave on the electrocardiogram to a photoplethysmography signal. PTT is inversely proportional to blood pressure.

General Terms
Your general terms must be any term which can be used for general classification of the submitted material such as Pattern Recognition, Security, Algorithms et. al.

Keywords
Blood Pressure, Pulse Transition time

1. INTRODUCTION
Blood is being carried from heart to all parts in the body by blood vessels called arteries. Blood pressure is the force of blood pushing against the wall of the arteries. Each time the heart beats, it pumps out blood to arteries. Systolic Pressure which is the highest blood pressure occurs when the heart is pumping. Diastolic pressure is lowest blood pressure when the heart is resting. Normal blood pressure is around 120/80 mm of Hg. The assessment of the systolic and the diastolic arterial blood pressure has both physiological and clinical Significance. There are several non-invasive methods to measure BP such as cuff sphygmomanometer, palpatory, oscillometric method. Sphygmomanometer, which is based on an external cuff and audible detection of Korotkoff Sounds, is considered to be the most accurate non-invasive method, and has been accepted as the reference standard to which other methods are compared. Non-constrained and continuous BP measurement is preferred for ubiquitous healthcare application.

1.1 ECG: Electrocardiogram is a graphic recording or display of the time variant Voltages produced by the myocardium during the cardiac cycle. The P, QRS, and T reflect the rhythmic electrical depolarization and repolarization of the myocardium associated with the contraction of the atria and ventricles.

1.2 PPG: Photoplethysmography is based on the determination of the optical properties of a selected skin area. For this purpose non visible infrared light is emitted into the skin. More or less light is absorbed, depending on the blood volume. Blood volume changes can then be determined by measuring the reflected light.

1.3 PTT: Pulse Transit Time is the time taken for the arterial pulse pressure wave to travel from the aortic valve to a peripheral site (usually the finger). The stiffness and tension in the arterial walls are the principle factors determining the speed of transmission of the pulse wave, and this in turn depends to a large extent on blood pressure. An increase in BP increases arterial wall tension and stiffness, thus shortening PTT; and conversely, a drop in BP lessens the stiffness and tension in the arterial walls, thus lengthening PTT. Pulse transit time is inversely proportional to blood pressure and the falls in blood pressure corresponds to rises in pulse transit time. PTT is typically about 250 ms.
2. Materials and Methods
The proposed work is based on the calculation of the PTT, PWV by which the estimation of BP of the patient can be done. To calculate the PTT and PWV, it is required to record the Electrocardiogram (ECG) of the patient with the PPG signal by which the PTT and PWV will be calculated. This in further required and ECG and PPG sensor/machine for the recording of the data.

2.1 PTT-BP Model
PTT in this paper is defined as the time between the ECG R peak and the peak of the PPG pulse within the same cardiac cycle, as illustrated in Figure 1.

![Fig. 2.1 The definition of PTT](image)

3. METHODOLOGY
The methodology of the proposed work is based on the detection of the site of the pulse wave PTT used to determine BP. The period between the R wave of the electrocardiogram and the peripheral pulse wave will be calculated to determine PTT. The study of pulse wave velocity (PWV), the speed at which a pressure pulse is transmitted from the heart through the arterial tree will be measured using pulse transit distance (Δx) with the following relationship:

\[PWV = \frac{\Delta x}{PTT} \]

Literature shows the relation of Pulse Transit Time (PTT) for indicating Blood Pressure (BP) changes as:

\[BP = A \text{ in } (PTT) + B \]

Where A and B are patients-dependent coefficients. Based on the above relationship, the BP of the patient will be calculated.

![Fig.3. Overview of the algorithm](image)

4. CONCLUSIONS
This system represents a non-invasive, easy, and reliable technique for detection of the pulse wave that allows assessment of blood pressure. The aim of the study was to
Confirm the reproducibility of a pulse wave measurement using the photoplethysmographic sensor. The measurement was carried out for different subjects of different age and gender. The results lie within acceptable limit. PTT offers a number of advantages over more conventional tests in that it is easy to measure, well tolerated by patients, relatively cheap and, perhaps most importantly, is fully portable thus lending itself to domiciliary studies. However the sensor needs accurate and fixed positioning for consistent result. The sensor is also depending on surrounding lighting therefore it requires shielding. The systolic pressure can be easily obtained by measuring the pulse that reaches the sensor after the cuff is deflated. Getting the diastolic pressure is more complicated. Hence, the designed PTT device in this paper shows potential to be used in the areas of continuous long term BP monitoring.

5. ACKNOWLEDGMENTS
The author is grateful to Mr.Parminder Singh for his motivation, and help towards the completion of this paper, as well as for providing valuable advice.

6. REFERENCES

